The position vectors of the points A and B are 3 vec i +5 vec j and vec i -2 vec j respectively. If the point M divides the line segment AB internally in the ratio of 5/3 then find the position vector of M.

0

 The position vectors of the points A and B are 3 vec i +5 vec j and vec i -2 vec j respectively. If the point M divides the line segment AB internally in the ratio of 5/3 then find the position vector of M.

Solutions. 



To find the position vector of point M, which divides the line segment AB internally in the ratio of 53, we can use the section formula. The section formula states that if a line segment AB is divided by a point M internally in the ratio 𝑚:𝑛, then the position vector of M is given by:

Position vector of M=𝑛Position vector of A+𝑚Position vector of B𝑚+𝑛

Given: Position vector of A (𝑎) = 3𝑖+5𝑗 Position vector of B (𝑏) = 𝑖2𝑗 Ratio m:n = 5:3

Let's substitute these values into the formula:

Position vector of M=3(3𝑖+5𝑗)+5(𝑖2𝑗)5+3

Position vector of M=9𝑖+15𝑗+5𝑖10𝑗8

Position vector of M=14𝑖+5𝑗8

Therefore, the position vector of point M is 14𝑖+5𝑗8.

Post a Comment

0Comments
Post a Comment (0)